
RETHINKING THE COMPUTER LAB

Rethinking the Computer Lab: an Inquiry-Based
Methodology for Teaching Computational Skills
Nick Senske

University of North Carolina at Charlotte

Introduction

Two years ago, the UNC Charlotte School of
Architecture began a new curriculum initiative to
teach computational design to all of its students.
As a capstone to the beginning design
sequence, the school now teaches a required
methods course to over 70 students a year. The
objective of the course is for students to learn
essential computational skills and ideas that will
prepare them for parametric tools such as Revit
and advanced digital techniques found in later
studios. However, learning how to think about
and make things computationally can be difficult
for many students. Issues of affect and
conceptual misunderstandings must be
overcome in order to learn skills and knowledge
that will transfer beyond the course. This paper
attempts to address the question: How can
schools of architecture teach computation in a
manner that is engaging and successful for a
large and varied cohort of students? The author
proposes that inquiry-based labs, which are more
active and motivating than traditional tutorial-
based labs, can address some of the challenges
of teaching computation to architecture
students. In support of this claim, the author
presents the findings of a two-year pilot study to
examine the effects of the new labs.

Issues with computer labs

The "tutorial-based" lab is a common form of
computing instruction in architectural education:
an instructor demonstrates a particular method
on a screen and the students follow along,
asking questions and receiving help or feedback

as they work. The benefit of the tutorial structure
is that everything is organized from a script.
Because the students are all following the same
predetermined prompts, it is not difficult for the
instructor or TA to teach the lesson, measure
outcomes, and offer assistance. Thus, tutorials are
a straightforward way to communicate
procedural information to students.

Despite the popularity of tutorials, there are
several issues with the format. The main one is
that tutorial-based labs are a passive experience.
There is seldom time to deviate from the lesson
for discussion or exploration. Additionally, the
pace of the lab is not controlled well and does
not support different styles of learning. Students
are dependent upon the teacher to present the
lesson. Some students cannot keep up with the
material; others are bored by what they see as a
slow delivery. This can be a problem for the
teacher, as the whole class can only progress at
the speed of the slowest student. Pauses to
answer questions, clarify explanations, and
troubleshoot software problems delay the lesson
and reduce the amount of content that can be
expressed in a lab session. Pacing issues like these
can make classroom management difficult for
the instructor. Because all of the students have
computers, maintaining attention is an ever-
present concern. It is easy for them to become
distracted by email, the web, or anything else
that can be brought up on the screen. Students
that are not paying full attention to the lesson or
trying to work ahead might miss a step, which
further delays the class. Students that get too far
behind might start to work on their own or do
something else, which defeats the purpose of the

2

lab entirely. Overall, the dependencies between
the students and instructor are too great and
represent a flaw in the tutorial-based lab
method.

Generally speaking, active and engaged
learning is more effective than passive learning1.
Following along with a tutorial is better than
listening to a lecture, but to facilitate deep
learning, one has to put information and skills to
use in other contexts2. This is why, in tutorial-
based courses, most learning tends to happen in
the assignments outside of class. A problem with
this is how inefficient learning can be in the
assignments that follow tutorials. Students tend to
have poor recall of what they did in the lab. It is
difficult to take good notes while trying to follow
along in class. If notes are provided, these are
often insufficient or incomplete. So the students
have to try to remember the procedures from
class while attempting the assignment.
Frequently, the assignment is not broken down in
such a way as to recall the steps. Thus, students
end up struggling to recreate the steps and
engage with the assignment superficially.
Assignments should be where knowledge is
integrated and extended, but when students feel
left adrift after the tutorial, the potential of the
assignment is eroded by recall and repetition.

How students learn is not the only concern. The
skills students learn in tutorial-based labs tend to
be inflexible, locked into rote sequences of
discrete steps and disassociated from essential
conceptual knowledge. This leads to design work
that lacks criticality and is too narrowly focused
on the parameters of the tutorial. Students
learning from tutorials may not be able to
abstract the important principles, which can
cause problems if they try to do something else
with the software or when the software inevitably
becomes out of date. Because this knowledge is
tied up in specific procedures, it is unlikely to help
them learn other skills and programs. Lab tutorials
cultivate a singular way of generating
computational artifacts, and do little to teach
students how to go about designing through

them. A course grounded in tutorials risks being
about the commands and procedures and less
about learning what is important about
computation

Another weakness of the lab-based tutorial is that
it does not accommodate different learning
styles. Some students need to hear and see the
lesson. Others just want to jump in and do things.
Some want to work in groups to learn together;
others want to work alone. In addition, the
tutorial lab has not kept up with educational
research and changes in student learning styles
as a whole. Research suggests that people
cannot focus on a lecture for more than 18
minutes3 at once, and so course styles are
changing. Students are learning in a variety of
new ways, with online materials and in smaller
chunks of time. As it stands, the traditional lab is
not flexible enough to accommodate the way
students are said to learn best.

As described in this section, there are many
reasons to reconsider tutorial-based labs for
teaching computational skills and knowledge.
The computer lab, as a space and an idea, will
not be disappearing soon, but it does seem to be
in need of revision due to changes to technology
and learning habits. In light of this, the question
becomes: What can be done with labs to
leverage them as spaces for a different and
more productive kind of learning?

The context of the class at UNCC

Before describing how the school revised the
computer labs for its computation course, some
context for the changes may be helpful.
Computational Methods is a 15 week course and
a requirement in the UNCC architecture
program. Because of this, the course has an
enrollment of over 50 undergraduates and 20
graduates a year. Course topics include basic
computational concepts such as variables,
iteration, and data structures, but with an
emphasis on connecting these ideas to design
principles and precedents. The goal of the
course is for students to achieve an awareness of

RETHINKING THE COMPUTER LAB

computation and basic skills for representing and
designing via computational processes. The
course is not about learning computation, but
rather learning about design via computation.

The course emphasizes thinking about
computation in a software-agnostic manner, but
practically speaking, lessons primarily use the
Grasshopper scripting language4. Grasshopper
was chosen because, at this point in the
curriculum, UNCC students already know Rhino.
Based upon his research, the author felt it was
best to build upon students’ preexisting
knowledge. Also, because Grasshopper is a
visual scripting language, it reduces many of the
syntactical problems with programming that can
challenge novices. Although Grasshopper does
not explicitly connect with all aspects of
computation (e.g. iteration and recursion are
handled implicitly), nevertheless, it serves as a
motivating introduction.

In the curriculum, students meet two times a
week, first in labs of fewer than 20 students and
later in a lecture with the entire class. Students
submit weekly assignments and complete a
midterm and final project of longer duration.
Other papers by the author contain more
information regarding the curriculum5 and
syllabus6.

Inquiry-based lab design

The typical computer lab bears little similarity to
the conventional idea of a laboratory. A science
lab is an active place where discoveries are
made and practical and abstract knowledge
come together. The tutorial-based computer lab
is a passive place where knowledge is consumed
and enacted, without much for the student to
discover. Because of this, the potential for deep
learning is low. But what if the computer lab were
more like a science lab? This is the thesis of the
current version of Computational Methods. The
course is built around the idea of an inquiry-
based lab, where the emphasis is on constructing
meaning through experimentation. By proposing
and answering questions, students learn more

than software commands; they learn how to
think like computational designers.

To begin, what does "inquiry-based" mean and
where does the term come from? Inquiry-based
learning can be traced to the medical and
nursing professions, which changed from a
lecture-based learning model to one where
students are taught by solving problems in
realistic situations7. It is closely related to project-
or problem-based learning, but a key difference
is that, with inquiry-based learning, the teacher
provides information directly to the students to
facilitate the learning process. As one might
expect from the name, the goal of inquiry-based
learning is to seek out and integrate knowledge,
rather than merely being exposed to it.

Online media and the inverted curriculum

The labs are essential to the course but are not
the only component within it. In advance of the
lab, students first watch online videos
demonstrating the skills they need, which they
follow along at their own pace. Students do not
require instructor interventions to study command
knowledge and procedures, which eliminates
many of the problems of pacing and classroom
management described earlier. Online media
also frees up class time to explore the meaning
and implications of these elements. This
arrangement is an example of what is known as
an “inverted curriculum”8: the students do things
outside of class that are usually done in class,
such as learning command knowledge, and in
the labs, the students work on assignments, which
they would typically do outside of class.

Lab reports

The primary assignment type in Computational
Methods is a "lab report," a series of in-class
prompts given to students to facilitate inquiry. In
a typical computing course, the assignments
tend to involve making something using the
tutorial elements. This has two potential problems:
the work can become too constrained by the
tutorial or the student does not know how to

4

extend the tutorial to produce new work. In both
instances, the assignment emphasizes production
rather than comprehension, which is
counterproductive for deep learning. In the
author's experience, learning scripting while
attempting to design with it at the same time
can be too demanding for many students. Thus,
instead of asking students to make artifacts
prematurely, the lab report is designed to
promote and assess comprehension. In the
report, students ask what the pieces of a script
are doing, reflect upon how the algorithm
functions within a design, and discover for
themselves how to make the software do things
that were not previously demonstrated in a
tutorial. This is the core idea of the inquiry-based
lab: students are not this told information in a
decontextualized way, as happens in a tutorial.
Instead, they build upon what they know and
find it for themselves.

Most lab reports follow the same basic structure.
They begin by asking students to practice
specific techniques from the video. Practicing is
important because it builds confidence and
helps the students recall the commands and
steps they need for the report. In later prompts,
changes are added to the script to produce
something unexpected by the student. This is
motivating and provokes the questions to follow.
The next series of prompts ask students to
conceptualize and explain what is happening in
the new script. Last, students modify the script to
make some variations of its initial state. Students
write their explanations, solutions, and reflections
and submit the reports to the instructor.
Explication of process is an essential practice for
making sense of computational artifacts. In
addition, it provides a means for the instructor to
assess students' thinking and address any
misconceptions. In the inquiry-based lab, student
discovery and understanding is valued above
good-looking designs of dubious comprehension.

Design in the lab

For novices, the lab sequence is better than a
design assignment because it is highly

scaffolded. The steps and expected outcomes
are clear and do not ask students to go too far
beyond what they already know. Scaffolding is
more motivating because students have a higher
chance of success with incremental steps rather
than being left to their own devices. This is not to
say that there is no design in the course, only that
it is carefully regulated. For example, many of the
later prompts in the lab report leave room for
students to expand upon the solution. All of the
students must demonstrate their mastery of a
principle, but they also have the opportunity to
express themselves and to make the submission
as complex as they want. Students that are
motivated appreciate the flexibility and those
who are having trouble keeping up can simply
opt out.

The midterm and final projects for the course are
more independent and allow for personal
exploration of computation. The midterm is
somewhat scaffolded study of a precedent
building. Students extract a parametric module
and then repurpose it to create a pavilion on a
provided site. The final project is an iterative
study of a building element taken from a past or
current studio project. Both of these projects are
well-constrained with a clear path to follow. They
model the computational design process while
allowing the student enough freedom to make
the process their own.

Social scripting

During the lab sessions, two students work on a
script at the same time. In agile software
development, this method is known as "pair
programming"9. One student writes the script and
another student observes and offers feedback.
Students trade roles frequently, so they
experience both ways of working. Pair
programming is helpful because it reduces the
cognitive load on the students, which can
improve performance10. When students first learn
scripting, it can be difficult to know how to
assemble the program and to understand what
the program is doing at the same time. This way,
the labor is divided and students can work

RETHINKING THE COMPUTER LAB

together to study the question and explain their
solution.

A side effect of pair programming is that it makes
learning computation more social. Students who
might otherwise feel that they could not write
scripts are encouraged when they can work
together with someone else. They soon find that
programming is not as intimidating as they
thought. In addition, the students felt free to ask
questions of other groups. One might expect that
this led to plagiarism or students otherwise
coasting through the report, but this did not seem
to be the case. Most of the time, students did not
want an answer, but rather a discussion about
their explanation. Because the goal of the lab is
comprehension, the stakes are purposefully low.
Students that finish their work and show effort are
graded well. An incorrect explanation is not
penalized; it is remediated. Students learn quickly
that understanding the previous lab is
prerequisite for the next one. Lab partners expect
of each other to keep up with the videos and
reports. By creating a culture of experimentation,
the lab becomes intrinsically motivating and
cheating is disincentivized.

Methodology

To study the effectiveness of the new lab format,
the author collected data from a control group
and experimental group and compared the two.
In fall 2011, the control class was taught with a
standard lab format. An instructor gave tutorials
to students, who followed along at the
computer. The following year, an experimental
group was taught using inquiry-based labs.
Before and after both courses, the students were
given a Likert-scale survey in an anonymous
online format. All surveys were voluntary. For the
purposes of reporting results, the Likert scale was
combined so that, for example, Strongly Agree
and Agree were counted as agreement with a
statement. The instructors also collected written
feedback from the university's online student
evaluations.

The response rates for both surveys were high,
averaging 68% of the class for the Fall 2011
course and 74% for the Fall 2012 version.

Results

The study revealed benefits from the inquiry-lab
design over our former tutorial-based labs. Most
significantly, student affect was improved by the
inquiry-based labs. In the earlier version of the
course, 36% of students claimed that they did not
see the connection between scripting and their
work in studio. In the written comments, many
specifically said that they would rather learn BIM
instead. Perhaps the most discouraging finding
was that 74% did not believe that the course was
important enough to be required.

Following the changes in the curriculum in the
2012 course, student attitudes improved. 92% in
the second group of students reported that they
found the material relevant to their future career,
an improvement of 28%. Additionally, far more
students – 98% of the class, compared to 58%
previously – believed that learning about
computation would help them learn other
software such as BIM. Overall student satisfaction
also improved, from 64% in the 2011 course to
90% in 2012. 81% said the course should remain
required. The reception for the course was much
improved with the modifications to the
curriculum.

The scope of the course did not change
between semesters; merely the way content was
framed and delivered. Students were not more
satisfied because the course was easier, but
perhaps because it was a better learning
experience. The inquiry-based labs gave students
an opportunity to practice their scripting skills in a
manner that guided them towards a better
understanding of computation. The lab gave the
students structure, which they did not get from
the assignments in the previous class. Another
key change was that, by making the lab more
social, students were encouraged to share when
they did not understand something. They did not
worry that their peers might understand

6

something that they did not. Because students
worked together and had coaching present in
the room, many misconceptions could be
overcome in the lab rather than outside of class.
This saved time and reduced student frustration.

The students approved of the inquiry-based labs,
but did the labs make them better
computational designers? This is a fair question. It
is difficult to measure the effect inquiry-based
labs had on a student's design skills, and whether
these skills develop better with inquiry based labs
compared to other methods. This is something
the author is presently studying, but it will take
more testing to make this determination. While
there may be some benefits to learning
programming, no study – including this one – has
definitively found any. So it seems unwise at this
point to claim that it helps students think or
design better.

What the study does say is that the inquiry
students reported greater confidence in their
knowledge of the material and were more
interested in applying it to their designs than their
counterparts in the tutorial lab. Results like this are
significant because, according to the surveys,
many students who take the required course are
not initially interested in computation and/or do
not believe they are capable of learning it well.
Students who are not motivated to study – or to
continue studying after a course – are unlikely to
master a subject, and so engagement is a critical
factor in developing skills and understanding11.
This seems to be the primary contribution of
inquiry-based methods to the computer lab.

Conclusion

The goal of a first course in any subject is not to
make students a master of that subject. This is
impossible. Rather, the goal of a first course is to
make students aware of a subject and to inspire
them to want to learn more. By reorganizing the
curriculum around active, social, inquiry-based
labs, the new version of Computational Methods
successfully introduced a diverse group of
students to a challenging subject while

maintaining their interest. While the study could
not prove whether students understood the
material better because of the different lab, if
students find the work relevant and are
encouraged to experiment and continue
learning, then it is likely they will perform better.
Thus, inquiry-based labs are a promising method
for teaching computation in architectural
education.

Notes

1 Ambrose, S. A., M. W. Bridges, et al. (2010). How
learning works: Seven research-based principles for
smart teaching, Jossey-Bass.

2 Bransford, J. D., A. L. Brown, et al. (2000). How people
learn, National Academy Press Washington, DC.

3 Johnstone, A. H., & Percival, F. (1976). Attention Breaks
in Lectures. Education in chemistry, 13(2), 49-50.

4 Rutin, D. (2012). Grasshopper (version 0.8.0052)
[software].

5 Senske, N. (2011). A Curriculum for Integrating
Computational Thinking. In Parametricism: ACADIA
Regional Conference Proceedings. Lincoln, NE.

6 Senske, N. (2013). Building a Computational Culture: a
pedagogical study of a computer programming
requirement in architectural education. In The Visibility
of Research, ARCC National Conference Proceedings.
Charlotte, NC.

7 Barron, B., & Darling-Hammond, L. (2008). Teaching for
meaningful learning: A review of research on inquiry-
based and cooperative learning. Powerful learning:
What we know about teaching for understanding, 11-
70.

8 Pedroni, M., & Meyer, B. (2006, March). The inverted
curriculum in practice. In ACM SIGCSE Bulletin (Vol. 38,
No. 1, pp. 481-485). ACM.

9 Williams, L. A., & Kessler, R. R. (2001). Experiments with
industry's “pair-programming” model in the computer
science classroom. Computer Science Education,
11(1), 7-20.

10 Sweller, J. (1988). Cognitive load during problem
solving: Effects on learning. Cognitive science, 12(2),
257-285.

11 Pugh, K.J., and D.A. Bergin. (2006). Motivational
influences on transfer. Educational Psychologist 41
(3):147-160.

	Nick Senske
	Introduction
	Issues with computer labs
	The context of the class at UNCC
	Inquiry-based lab design
	Online media and the inverted curriculum
	Lab reports
	Design in the lab
	Social scripting
	Methodology
	Results
	Conclusion
	Notes

