Building a Computational Culture: a pedagogical
study of a computer programming requirement

Nick Senske'
'University of North Carolina at Charlotte, Charlotte, NC

ABSTRACT: As computational design becomes increasingly important to architectural practice, curricula
must be updated to teach new outlooks and skills to the next generation of design students. Over the last
two years, UNC Charlotte has tested a curriculum that emphasizes computational thinking and methods.
The core of this curriculum is a required course that introduces over 70 students a year to the fundamental
ideas of computation through exposure to programming in a design context. This paper describes our
teaching methods and our findings from a study of the course, which includes attempts to measure student
outcomes, attitudes about computing, and the application of computation after the course. The results of our
study, which suggest an inclusive methodology and emphasize the cultural dimension of this pedagogical
task, may help schools in the planning and implementation of their own courses that introduce computational
design.

KEYWORDS: Pedagogy, Computational Design, Computational Thinking, Computer Programming

INTRODUCTION

Computational design is becoming increasingly important within the architectural discipline. In today’s
profession, CAD and 3D modeling alone are not enough to address the need for more economically and
ecologically sustainable buildings. Computational methods such as parametric models, generative
algorithms, simulations, and digital fabrication assist in the design and construction of buildings that are not
only aesthetically innovative, but performative as well (Kalay, 2004). In order to stay competitive in a
globalized market, architects will need to know not only how to use these tools, but how to integrate, modify,
and write their own. Once an exceptional specialization, computational design will soon play an essential
role within architectural practice and research.

This trend presents a challenge for architectural educators. How will schools teach their students these new
ways of working? At the moment, the answers to this question are incomplete and unsatisfactory. First, what
should be taught and where does it belong in the curriculum? How does computation fit within the subjects
that architecture schools already must teach, especially when curricula keep growing in scope due to new
requirements? Second, technology changes constantly. The software and techniques that students learn in
their initial years could be insufficient or obsolete by the time they graduate from architecture school. What
can schools teach about computation and design that will help students learn future tools?

Determining the pedagogy is another problem. Many architecture students are hesitant to learn computation
because they think it will be difficult or too far removed from how they envision design (McCullough, 2006).
Furthermore, there is evidence that computation is a difficult subject to teach and learn. Computer science,
for example, has an attrition rate of almost 30% (Roumani, 2002) and a surprising number of graduates
cannot design and write simple programs (McCracken, et al, 2001; Bennedsen and Casperson, 2007). Even
accomplished computational designers admit there is a steep learning curve (Burry, 2012). Thinking in terms
of explicit, procedural abstractions is hard, especially when, as Seymour Papert argues, there are no
traditions of this within our own culture (Papert, 1980). In short, if the goal is to someday teach computation
to all architecture students, more research is needed.

Towards this end, this paper describes the development of a required course in computational design and
the results of a pilot study to assess its effectiveness.

1.0 Computational Thinking in the Curriculum

The School of Architecture at UNC Charlotte spent several years developinTg a curriculum that addresses
computational design throughout the undergraduate and graduate sequences . A core idea of the curriculum
is that our courses are not focused on developing fluency in particular kinds of software or tools, but rather
computational thinking. We believe that if our students have the skills and mindset to use computation well,
they will be able to adapt to changes in technology and possibly even participate in those changes through
their own innovations.

Computational thinking is not a new idea. In 1961, Alan Perlis, an early pioneer in computer science, argued
that computer programming should be a requirement of a liberal arts education (ibid.). His reasoning was
that process plays a critical role in all fields, and the computer enables one to interactively create and run
processes. Perlis believed that students should learn programming, not so they could run a computer, but
because it is a means of learning about process.

Of course, learning to program does teach a great deal about how to operate computers. One of the most
difficult parts of computation is translating one’s thinking into the computer. To do this, a person not only has
to know about their own field’s processes, but also about the capabilities and limitations of computers, the
commands, logic, and inputs/outputs of the software, and how to break down an idea into rules and steps for
the computer to follow. Knowing about both human and computational processes endows a person with a
powerful way of working and a means of understanding any computational device they may encounter
(Sheil, 1983). This is the essence of computational thinking2 — the ability to work well with computers.

Some may argue that students do not need to study programming to learn computational thinking, and,
instead, there might be other ways to teach students how to think about process and approach computing.
This may be true. However, two things must be made clear. First, programming does not necessarily mean
writing code, so this is no reason to avoid it. Whenever a person authors instructions for a computer to
follow, whether it is with visual programming (e.g. Grasshopper, Scratch, etc.), scripting, or by setting the
controls in a simulation, etc., this is arguably a form of programming (Blackwell, 2002). What matters is the
thinking involved, not the interface. Second, it makes sense to learn about process in terms of the dominant
representational medium of the day, which is computing. Transfer of abstract ideas is difficult to achieve, so
it is best to teach lessons that are as close as possible to the concrete objective (Perkins and Salomon,
1989). In a single semester, transfer of specific contextual ideas is much more likely (Palumbo, 1990).
Therefore, if we want architecture students to learn computational design, why would we start to teach logic
and process in anything other than the computer? While it may be possible to use other metaphors to learn
about process, programming is most directly relevant.

The goal of the curriculum is to create what we call a “computational culture” in our school. By teaching
computational thinking to all of our students, we hope to affect the values, attitudes, and beliefs they bring to
their studies. We are not looking to create a school full of software programmers, but rather we want
students to learn about computation early, so we can build upon it in other courses and have more critical
conversations about its use in design. When everyone in our school learns computation, the students will
see it as something they can participate in — not something than only computer people or other schools are
able to do. In short, our objective is to make computational design as commonplace and as useful as 3D
modeling has become. Not everyone has to make it his or her focus, but an architect needs to be able to
understand its potential role in design and recognize when it applies. We believe one of the best ways to
prepare our students for the future of design is to immerse them in a culture where computation is the norm
and not the exception.

2.0 Teaching Methodology

The foundation course in our computational sequence is called Computational Methods. It is attended by our
third year undergraduates as well as graduate students (in either their first or second year, depending upon
whether they are in a post-professional or pre-professional program, respectively). The total class size is
over 70 students. To the best of our knowledge, it is the only required course in computation that is taught
this early in a professional architectural curriculum. It was taught for the first time in fall 2011. A second
iteration followed in the fall of 2012.

The primary objective of the course is to teach students the fundamental concepts of computation. The
secondary objective is for students to learn specific methods for applying these ideas in a design context.
Our vehicle for this is computer programming. To be clear, we do not propose that learning programming
necessarily makes one a better designer. Rather, it can assist designers if used properly. The aim of the
course is not to train great programmers but to instill a greater awareness of computation in architecture as
well as other fields, so that students can approach it critically — whether they choose to use it or not.

2.1 Active labs

The class meets twice a week, first with a lab session and then with a follow-up lecture. This might seem
backwards, as it would be more common to use the lecture as background to set up the concepts for the lab,
but the arrangement is deliberate. Educational research suggests that students learn best when they have
the opportunity to work with ideas in a concrete form first, and in the abstract later (Bransford et al, 2000).
Before the labs, students learn commands and procedures through online videos we produce. This kind of
information is explicit and does not require much student / teacher interaction. Once the students learn the
basic software technique, we use our labs to introduce the underlying computational concepts in a hands-on
way, by giving our students situations where their existing knowledge must be extended to solve a problem3.
This is sometimes referred to as inquiry- or problem-based learning (Gallagar, 1997). For example, from a

previous lesson, students know how to loft a single list of parametrically generated curves, but in the
following lab, they would need to learn about data structures in order to create several lofts from multiple
lists of curves — i.e. lofting a list of lists. Through a guided series of questions, students work together to
discover and teach each other new concepts. This pedagogy is different from most computing tutorials,
where the instructor merely tells students the concepts.

Our lab pedagogy is a marked contrast from the typical computing lab, where students follow along with
passive tutorials that are dependent upon the instructor and the speed of the lesson must accommodate the
slowest learner. In our “active” labs, the instructor is there to answer questions and coach, but the students
work at their own pace. Later in the week, the lecture abstracts the lessons, reinforcing and clarifying the
concepts and placing them within a historical and architectural context through the use of examples and
precedents. It is not yet clear whether this format results in better learning, but it seems to improve
engagement. In their course evaluations, many students cited the role of the labs in overcoming their
apprehension about programming.

2.2 Assignments

In general, there is not much design in the course — or rather, the design exercises are highly controlled. The
first version of the course taught us that it was difficult for our students to both learn about computation and
to produce meaningful design artifacts at the same time. The cognitive load was much too great. The active
labs are part of our effort to be clearer and more focused about what we ask students to do, while at the
same time challenging them to solve problems creatively. To practice their skills, the students produce
weekly lab reports, where they write their solutions to the lab problems and describe their thought
processes. The report prompts are designed this way so students have experience externalizing their
thoughts and communicating with others about computational processes.

Additionally, we have two major projects that introduce limited design into the course. The first is a
precedent study, where students extract a parametric assembly from an existing project and apply it in a
new context. This assignment works well because students do not have to invent the assembly; they only
need to decipher and implement it. The second project is their final project, where they must take a design of
theirs (either current or previous) and use computation to iteratively study some aspect of it in a data-driven
way. Using a design of their own allows them to jump into the project with a program, site, and a building
that are familiar. This way, they can focus on using computation to explore or revisit problems. As a final
exercise, it is motivating and relevant, and a good way to review the lessons from the course.

2.3 Technology

One of the pedagogical principles of Computational Methods is that learning how to think is more important
than learning tools. This being said, the first tool that students are exposed to is important in providing
motivation and forming their earliest opinions about computation. For this reason, the most recent version
(fall 2012) of the course is taught exclusively in Grasshopper, which is a visual scripting language for
Rhinoceros (McNeel, 2012). Earlier, we taught the course using both Processing (a scripting language for
Java) (Reas and Fry, 2011) and Grasshopper, but the students did not find Processing as relevant. The
benefit of Grasshopper is that it builds upon the Rhinoceros skills they learn in their second year and the
output is expressed as Rhinoceros models, which they can directly apply to studio projects. The
disadvantage is that, with Grasshopper, it is not possible to talk explicitly about concepts such as looping
constructs, subroutines, and object oriented programming, which are important computational ideas. The
reception for the Grasshopper lessons has been overwhelmingly positive, however. In fact, after taking the
course, several of our students explicitly asked to learn Processing. They want to learn to code. This is a
positive outcome for an introductory course and further evidence that the right tools can be motivating.

2.4 Course Topics
The following is a rough outline of our syllabus, to provide some idea of the topics we cover and the manner
in which we approach them:
* Week 1 - Parametrics: Introduction to the strengths of computation and how computation is applied
in architecture. Introduction to basic parametric constructs in Grasshopper.

* Week 2 - Variables: Covers more of the Grasshopper interface, simple geometric components,
constants, controlling variables, setting up relationships (dependencies), and basic transforms (i.e.
move, rotate, and scale). The first part of the lab covers object positioning as it relates to
parametric dimensions. The second part examines proportional transformations (related,
dependent variables) using a parametric column form.

* Week 3 - Repetition and Loops: Covers the repetition of data in Grasshopper (i.e. creating lists)
with the Series and Range components. Also, one- and two-dimensional systems for positioning
and transformations, and the use of the Graph Mapper for visual generation of numerical data
patterns. Data structures for looping (lists of lists) are briefly introduced. In the lab, we create: a

parametric “tower” with repeated transformations; numerical patterns (e.g. sine waves) from
equations with Graph Editor; “Spirograph” demonstration with stacked repeated transformations.

e Week 4 - Distributions, References, and Cull: The idea of “distribution” combines the notion of
variables (e.g. coordinate locations) with repetition to create dependent parametric constructs. We
implement distributions of parametric objects (e.g. points along a curve) and referenced (locally-
oriented) geometry over curves and surfaces. We also study the basic Cull (remove / delete)
components to create rhythmic patterns in repetitive constructs.

* Week 5 - Parametric Design Process: Begins with a thorough review of 3D modeling topology -
points, curves, surfaces - and then describes the thought processes and methods used in the
creation of a parametric masonry wall. Topics include: script design, task decomposition, and
iterative script refinement.

* Week 6 - Procedural Diagrams: Our midterm lessons describe a method for creating 2D diagrams
to visually explain how a script generates a form. The underlying premise of this exercise is that
showing someone code does not provide a useful explanation of how a parametric system works.
By learning to create informative process diagrams, we can better communicate our design intent.

e Week 7 - Debugging: We explicitly discuss and practice strategies for problem solving and
debugging programs. Debugging is an essential part of the programming / computational design
process, but is seldom covered in much detail.

* Week 8-9 - Adaptive Parametric Patterns: This two week review unit covers some general and
advanced algorithmic methods for adapting parametric patterns to different contexts. Specifically,
we explore: referencing surfaces and matching curves to surface forms; review of surface aligned
frames; using frames to create local coordinate systems for shifting and transforming points; the
Box Morph object for adapting arbitrary geometry.

* Week 10 — Algorithms: This week focuses on algorithm development: the design of reusable
logical constructs for architectural projects. As a demonstration of these principles, the lesson
provides an overview of attractor concepts (an algorithm that references distances within a
parametric system) and different applications of attractor systems in design and architecture.

* Week 11 - Data Structures and Manipulation: This series of exercises covers basic list operations:
list length, extracting indices, accessing list items, removing list items, shifting lists, combining lists,
etc. Building upon these lessons, we generate structural framing patterns that deal with points,
lines, and surfaces derived from subdivided surfaces. These patterns make use of several kinds of
data access and filtering, and review earlier lessons in topology.

* Week 12 - Metric-Based Design Components: This week integrates with lessons from our
daylighting and building systems courses. It covers several basic algorithms that use sun angle as
a driving parameter: variable louvers, warped louvers, apertures / openings, light canons, light
shelves.

e Week 13 - Conditional Logic: Introduces the basic concepts and components involved in
conditional (rule-based) logic. We cover the use of the Dispatch component with the Larger /
Smaller, Equals, and Modulo components. Examples include: 2D containment patterns, filtering
geometry based upon coordinates and height, and 3D intersections as a basis for subtractive and
additive modeling.

* Week 14 - Randomness and Generative Design: Our final week surveys some basic algorithms for
randomness in architectural contexts: erosion, "Pick and Choose", "jitter", etc. We follow this with a
brief discussion on the concept of randomness and order in art and design. Finally, we talk about

Processing and carrying the ideas of the course beyond Grasshopper and into generative design.

The order of topics — especially our choice of final topics — is not what you might find in a typical introductory
computer science course or textbook. We did this deliberately to make sure that students were exposed to
ideas in their most explicit form before we added more layers of abstraction and automation.

The course is not intended to be comprehensive, in terms of either computation or Grasshopper. Rather, it is
meant to give students strong background they can immediately apply to their work in other classes. As the

lessons increase in complexity, we revisit ideas in several different contexts to create depth. We believe this
is the best way to encourage students to retain the material in the long term.

3.0 Assessment

To study the effectiveness of the course, we collected data through an online post-class survey. The survey
was voluntary and included multiple choice questions and the opportunity to provide short written answers.
53 out of 72 students participated in the survey. University course evaluations provided additional written
feedback for the study.

Our first concern was whether students felt the material applied to them, as programming is not a skill many
architects feel they can or need to master. Measuring this is important because educational research
suggests that if students, particularly older ones, do not see the application of what they are learning right
away, it can be de-motivating (Pugh and Bergin, 2006; Lepper, 1985). We seem to have succeeded at
capturing their interest. In response to the question: “How relevant is computation to your future career?”
92.4% of students said it was in some way relevant, 33% said it was extremely relevant, and 81% of
students agreed that the course should remain a requirement.

The course was also well received. 90% of students agreed or strongly agreed with the statement: “Are you
satisfied with your experience in Computational Methods?” and 77% said they learned more than they
expected. Reading the feedback from students, we have reason to believe that we have taken an
intimidating subject and made it approachable:

"| feel that | have learned more than | could have anticipated. | was very lost and confused at first, but slowly
things started to make since and | truly felt accomplished about my work. | think that the course gives a great
foundation understanding about how computer designing works."

"This course was not quite what | expected, but | was pleasantly surprised. Learning about the logic of
computation is incredibly important and relevant today."

A good indicator of student engagement is whether students are motivated to keep learning about a subject
after completing the course. In the post-class survey, 70% percent said they would consider taking an
advanced version of Computational Methods. This is a positive outcome for an introductory course.

Another goal of the study is determining how much students understand about computation after a semester
in Computational Methods. Are students really learning computational thinking and does this affect how they
approach design? Unfortunately, we found this difficult to determine from the assignments and projects we
collected. Our students can write programs, but we do not have the assessment tools yet to examine how
they write programs. They learn to document and present their process in the course, but what they produce
does not tell the whole story (or even the whole truth). The student evaluations offer more insight:

| was skeptical about digital design when | started this course (other than using architecture-minded software like
Revit, for example). However, now that I've seen how parametrics actually works [sic], learned a particular
scripting software, and have seen examples in class of some inspired, digitally designed architecture, | do believe
that digital design can result not just in 'blobs’ but in some really beautiful, metric-based designs. | still don't quite
know how and when to apply this technique to my own studio designs, but | think it's a good thing.

| leave the class definitely thinking about new ways to approach a design. | understand that the process is not
exactly as linear as it once was, as rules and decisions can be made before hand as you get to build a system
before a project. Even within a design project, | already find littte moments where Grasshopper would
programmatically accelerate the design.

| think that | learned a lot in this class, mainly because | can begin to apply it outside of just comp methods. This
has taught me a new way of thinking about things and the design process and now | can begin to see how this
can be incorporated in studio.

Judging from our evaluations, the course appears to be successful at teaching many of our students to see
computation as another way of thinking about design. We are particularly encouraged by the statements
about process in the comments that many of them wrote. Still, we do not know with certainty how many
students think this way and how sophisticated their thinking is. For example, our students can use
computation to solve the small problems we give them in class, but when they want to design something for
studio, many of them have trouble breaking down their idea into steps they can turn into a program. Our
students also report that it is difficult for them to come up with their original ideas for using computation or
that they do not always recognize when they could use it in a project. In future versions of the course, we
hope to address these problems.

While we seem to have raised their awareness of computation and made them inclined to apply it, it is also
unclear whether the knowledge and skills we teach students will transfer to other subjects they study.

Transfer to new contexts is one of the most important measures of learning (Thorndike and Woodworth,
1901; Singley and Anderson, 1989). We are only beginning to measure this rigorously. However, we can
report some initial findings. At the end of the course, when asked whether they thought their experience
would help them learn Revit or other computational tools, 98% percent of our students said they believed it
would. This may turn out to be true. In our advanced computing courses such as digital fabrication and our
BIM seminar, the faculty report that students who have taken Computational Methods tend to learn new
material faster and perform better on assignments, because they have a firm grasp of computational
fundamentals. Eventually, the instructors believe that they will be able to teach more in their courses,
because they do not need to introduce so many computing concepts themselves. Granted, this is only
anecdotal support. At the end of this semester, we plan to track the outcomes of our Computational Methods
students in later courses to determine if there is any measurable difference.

4.0 Reflection and future plans

Our two year experiment with Computational Methods has taught us several lessons. First, it is essential to
consider student attitudes and expectations of the subject. In order to change the design culture, we must
respect the existing culture. It is not enough to make the course required and expose everyone to
programming. Students come to the course without much exposure to computation and apprehensive about
their prospects of learning it*. With this in mind, we designed the lessons to make the material relevant and
to connect to ideas, software, and precedents that students already know. In addition, labs were made into
active social experiences where students were encouraged to work and solve problems together. As a
result, our surveys showed that students were motivated to learn the subject and finished the course with a
different mindset about computation.

Second, we learned that architecture students can learn to write programs, but this does not necessarily
mean they can apply them in a design context. While they recognize commands and can exploit
programming patterns we teach them, students still have difficulty with program flow and design. This should
be expected, as these are common problems even for computer science students (Soloway et al., 1982;
Eckerdal et al., 2006; Linn, 1985). Still, it makes our students less effective at using computation in their
studio projects. We also want them to be able to intelligently choose where to apply computation (instilling a
sense of “computational ethics”, as it were), and it seems that they are still unclear about this. They do not
learn these ideas implicitly, even though we show them examples of “good” uses of computation and critique
their work on its merits. It might be necessary to devote more course time to explicitly teaching these ideas,
or to design assignments that scaffold these kinds of choices for students.

Third, we may need to adjust our expectations regarding our students’ learning outcomes. Computation is a
challenging subject. As Alan Kay reflected in his research with children learning programming, developing
thinking that goes beyond the superficial characteristics of the language often takes time (Kay, 1993). Better
tools and pedagogy can help, but even with the best of both, learning to design computationally will probably
take more than a semester. We can introduce students to a different way of thinking and teach them the
language of computation — which we believe is worthwhile, pedagogically — but their ability to express
themselves in this language is low, at least initially. This makes sense, if we can analogize learning
programming to the acquisition of a foreign language. Fluency is not expected in a single semester. This
understanding has possible repercussions for our teaching. To help achieve the depth of thinking we want
our students to possess, we may need a second required computation class that focuses more on design
and process, or perhaps a studio where all of the students apply computation.

Our evaluation of the course is iterative and ongoing. We recognize that, at this time, we cannot quantifiably
measure whether the course is meeting all of its goals. This is because we have not performed the some
measurements at the time of this writing and also because, in hindsight, some of our assessment tools were
not capturing the right data. Our plan is to perform a follow-up assessment of the course, to track how well
students have retained what they studied, to study the differences in later classes between students who
have taken Computational Methods and who have not, and to record how often computational design is
applied in later studio work. To help answer the question of whether students are learning computational
thinking, we are working with a cognitive scientist to develop a procedural assessment tool for future
versions of the course.

5.0 Conclusion

The School of Architecture at UNC Charlotte believes that computational design skills will someday become
a standard part of an architectural education. Computational Methods is our attempt to begin this
transformation at our own institution. By learning about programming early in their education, students are
exposed to computational thinking, which may help them learn software and other tools in the future. As an
introduction to the subject that motivates students to continue learning, the course appears to be fulfilling its
purpose.

The impact of Computational Methods extends beyond the two cohorts of students who have taken the
course. The other students and faculty are seeing and hearing more about computational design, and this is
strengthening the impact of our new curriculum. The school is more aware of computation, its potential, and
its accessibility. They see that programming is not only for certain professions or the math-savvy, but
something that anyone can do. What was once an esoteric subject is on the way to becoming normative —
another way for students to think about and pursue design. It will take time and further study, but we are
making progress towards creating a computational culture.

REFERENCES

Bennedsen, Jens, and Michael E. Caspersen. "Failure rates in introductory programming." ACM SIGCSE
Bulletin 39, no. 2 (2007): 32-36.

Blackwell, Alan F. 2002. What is Programming? In 14th Workshop of the Psychology of Programming
Interest Group. Brunel University.

Bransford, J.D., A.L. Brown, and R.R. Cocking. 2000. How people learn: National Academy Press
Washington, DC.

Burry, Mark. 2011. Scripting cultures: Architectural design and programming: John Wiley & Sons.

Eckerdal, Anna, Robert McCartney, Jan Erik Mostr, Mark Ratcliffe, and Carol Zander. 2006. Can graduating
students design software systems? In Proceedings of the 37th SIGCSE technical symposium on Computer
science education. Houston, Texas, USA: ACM.

Gallagher, S. A. 1997. Problem-based learning. Journal for the Education of the Gifted, 20(4), 332-362.

Guzdial, Mark. 2008. Education: Paving the way for computational thinking. Communications of the ACM 51
(8):25-27.

Kalay, Yehuda E. 2004. Architecture's New Media. Cambridge: MIT Press.
Kay, Alan. 1993. The Early History of Smalltalk. ACM SIGPLAN Notices 28 (3):69-95.
Lepper, Mark R. 1985. Microcomputers in education: Motivational and social issues. American psychologist

40 (1):1-18.

Linn, M.C. 1985. The cognitive consequences of programming instruction in classrooms. Educational
Researcher 14 (5):14.

McCracken, Michael, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan, Yifat Ben-David Kolikant,
Cary Laxer, Lynda Thomas, lan Utting, and Tadeusz Wilusz. 2001. A multi-national, multi-institutional study
of assessment of programming skills of first-year CS students. ACM SIGCSE Bulletin 33 (4):125-180.
McCullough, Malcolm. 2006. 20 Years of Scripted Space. Architectural Design 76 (4):12-15.

McNeel, R. 2012. Rhinoceros (version 4.0 R9) [software].

Palumbo, David B. 1990. Programming language/problem-solving research: A review of relevant issues.
Review of Educational Research 60 (1): 65-89.

Papert, Semour. 1980. Mindstorms: children, computers, and powerful ideas. Cambridge: Perseus
Publishing.

Perlis, A.J. 1961. The Computer in the University. Paper read at Management and the Computer of the
Future.

Perkins, D. N., and Gavriel Salomon. 1989. Are Cognitive Skills Context-Bound? Educational Researcher 18
(1):16-25.

Pugh, K.J., and D.A. Bergin. 2006. Motivational influences on transfer. Educational Psychologist 41 (3):147-
160.

Reas, C. and Fry, B. 2011. Processing (version 1.5) [software].

Roumani, Hamzeh. "Design guidelines for the lab component of objects-first CS1." In ACM SIGCSE Bulletin,
vol. 34, no. 1, pp. 222-226. ACM, 2002.

Senske, Nicholas. 2011. A Curriculum for Integrating Computational Thinking. In Parametricism: ACADIA
Regional Conference Proceedings. Lincoln, NE.

Senske, Nicholas. 2013. Rethinking the Computer Lab: an inquiry-based methodology for teaching
computational skills. In Proceedings of the 29th National Conference on the Beginning Design Student.
Philadelpha, PA: Temple University. (forthcoming)

Sheil, B.A. 1983. Coping With Complexity. Information Technology & People 1 (4):295 - 320.

Singley, M., and J.R. Anderson. 1989. Transfer of Cognitive Skill. Cambridge, MA: Harvard University Press.

Soloway, Elliot, Kate Ehrlich, and Jeffrey Bonar. 1982. Tapping into tacit programming knowledge. In
Proceedings of the 1982 conference on Human factors in computing systems. Gaithersburg, Maryland,
United States: ACM.

Thorndike, E.L., and R.S. Woodworth. 1901. The influence of improvement in one mental function upon the
efficiency of other functions. Psychological Review 8 (4):384.

Wing, Jeannette M. 2006. Computational Thinking. Communications of the ACM 49 (3):33-36.

' For those interested, a more detailed description this curriculum can be found in (Senske, 2011).
2 Perlis did not coin the term computational thinking. It is not clear who did. However, in contemporary usage
this is the phrase used to describe the educational ideas he proposed. See (Matteas, 2005), (Wing, 2006),
and (Guzdial, 2008) for more recent discussions of the need for computational thinking in schools.

® For more information on our lab pedagogy, refer to (Senske, 2013).

*In our pre-class survey, 87.7% of students reported no previous introduction to computation. Of these, 47%
expressed concern with their possible performance in the course.

