THIS PAGE LEFT
INTENTIONALLY
BLANK

A Curriculum for
Integrating
Computational
Thinking

Nick Senske

University of North Carolina at Charlotte

For architectural educators, a challenge of teaching digital
design is maintaining a relevant curriculum amidst an
increasing array of constantly evolving software and
tools. This paper describes a curriculum proposal under
review at the University of North Carolina at Charlotte,
which attempts to address this situation through the
integration of computational thinking in studios and

seminars.

Computational thinking is a developing area of study that
originates from the discipline of computer science.
Researchers define it as the ability to leverage the
strengths of computing in order to study and solve
problems. Whereas most digital design education is
narrowly focused on the acquisition and application of a
limited set of software commands and techniques,
computational thinking is concerned with the
fundamental concepts at the heart of every piece of
computational software and hardware. In future testing,
we hope to demonstrate that a more holistic mindset,
rooted in these first principles, can assist students with
understanding and making effective use of any form of
computing they may encounter— now or in the future.

Introduction

At the University of North Carolina at Charlotte (UNCC),
the School of Architecture is developing a new integrated
curriculum for digital design. The primary impetus for this
effort is the growing professional demand for students
proficient in the latest software methodologies, namely
parametric design and Building Information Modeling.
Learning these tools involves more than merely learning a
new interface; it requires a change in one’s thinking
about design. In addition to representing buildings
visually, with digital drawings and models, designers need
to understand how to represent them symbolically, as
dynamic systems of rules and relationships. While this is a
significant shift in how architects conceive of their work,
it is only the beginning of a growing trend towards
computational design.

As our faculty considered the reorganization it would take
to keep our courses up-to-date, we wondered: should our
program be looking ahead to the future, towards
scripting or other forms of programming? What about
data visualization and simulation? Given the pace of
advancement in our discipline, how long would our new

curriculum remain relevant?

Adapting to changes in technology can be challenging for
educators. The tools and methods of digital design evolve
quickly, while the pace of administration tends to lag
behind. What meaningful lessons can we teach our
students about digital design that will not be rendered
obsolete by next year's software or the new tools just
over the horizon?

In this paper | describe a proposal under review at UNCC
that seeks to address this issue of relevance. | will argue
that teaching computational thinking can provide
students with a lasting foundation; a mindset that is
compatible with design, while taking advantage of the
most powerful aspects of computing. We believe this new
curriculum will overcome flaws in current digital
pedagogy, resulting in students who are more engaged
and adaptable with digital media.

Problem

In the book Design by Numbers, John Maeda argued that

“we implicitly glorify rote memorization as the basis of
skill for a digital designer” [1999]. Many students’
understanding of software is limited to sequences of
commands. As a result, they have a superficial grasp of
digital design. Instead of deriving solutions from
principles and structure, they look at the surface of
problems to determine which sequence to use. When
problems arise in the software, they have no mental
model of the system to organize their thinking, and so
they engage in haphazard “hacking” behavior to seek out
a solution. They suffer from what Roy Pea describes as
“production without comprehension”[1983].

These difficulties can be amplified when students attempt
to learn computational design. There is far more to
account for in the creation of a dynamic logic-driven
system than in producing a static representation.
Learning the sequences of commands to make the system
— as one might in a lecture, tutorial, or textbook — does
not teach one how or why the steps go together in that
particular order. In other words, the command
knowledge teaches nothing about design or problem
solving.

Furthermore, completing additional computational
tutorials does not necessarily result in a more
comprehensive outlook. A correct mental model of a
computational system is difficult to infer based on surface
details. This is because computational systems do not
work in simple cause-and-effect relationships. Effects
from one part of the system can propagate to others
without any visible effect [Sheil, 1983]. For this reason,
the models that users infer from computational systems

are often full of misconceptions and outright errors.

A student’s incomplete understanding can lead to designs
that are inelegant, inefficient, or do not work. Most often,
however, it produces designs that are severely limited;
example or tutorial solutions with a few minor variations.
Learning more tutorials increases the effectiveness of this
tactic, but does not solve the problem of comprehension.

Moreover, when the problem or the software changes
significantly enough, rote patterns no longer apply.

There is a significant gap in digital design classes that
occurs between teaching commands and critiquing
designs. In order to improve students’ comprehension of
the material, educators need to do more than help them
collect knowledge about tools. Studies of performance
show that experts don’t just know more commands or
patterns; they think differently about problems. They
have robust mental models of their working domain and
a perspective based on principles, not surface details
[Dalbey and Linn, 1985]. The question is: how can
architectural educators produce this kind of deeper
learning with regards to computation? What goes into
the gap?

Computational Thinking

In our new curriculum, we propose to address these

challenges by teaching computational thinking.
Computational thinking is not a new idea or one that is
unique to architecture. It is a growing area of research
that originates from the discipline of computer science
[Wing, 2006]. Broadly defined, it is the ability to leverage

the strengths of computers in order to study and solve

problems. Computational thinking involves knowledge of
the fundamentals of computing such as abstraction,
iteration, and data structures. In addition, it includes the
skills to break down a problem or task in terms of the
computational steps involved, to test solutions-in-
principle and refine them based on feedback, and to use
them to study and solve problems. It also refers to a
sense of procedural reasoning: the ability to envision the
structure of procedural systems and anticipate their
outcomes [Sheil, 1983]. When architects talk about the
necessity and difficulty of “thinking differently” with tools
like BIM, this is likely the gap. Explicit instruction in
computational thinking is precisely what is missing from
most classrooms and textbooks.

There are significant advantages to computational
thinking besides learning to use the latest tools well. First,
all forms of computing — all software, all programming
languages, and devices — can be understood as different
instances or interfaces of computation [Blackwell, 2002].
Therefore, a person that understands computational
principles has a basis for making sense of anything
computer-based. The tools might change, but the
underlying logic does not . Second, software and devices
are used most effectively when they take advantage of
computation [Crawford, 1987]. Third, understanding how

Figure 1. Student examples of computational design. From a pilot study of Computational Methods, conducted by the author at the

University of Michigan, Ann Arbor in 2009.

to exploit these capabilities allows one to represent and
solve problems computationally. This has the potential to
redefine one’s work [Pea, 1985]. For instance, the way
that algorithmic stock trading and “shotgun” gene
sequencing transformed the fields of business and
biology, respectively. In the words LOGO (and LEGO
Mindstorms) inventor, Seymour Papert, computational
thinking allows us to “get someplace different” [1993].

To illustrate these ideas in practice, consider an example
that everyone has some experience with: Microsoft
Word. Most people use Word for little more than typing,
formatting, and printing documents. In this scenario, the
processing power of the computer is not fully exploited.
The software does not substantially change the way one
approaches the task compared to a typewriter. However,
applying computational thinking, one might recognize
that the document is more than a simulation of paper,
but is actually a data structure. Instead of editing a
repeated mistake by hand, users would apply the
principle of substitution and seek out the Find and
Replace command. Similarly, one could approach
formatting parametrically, designing and associating
Styles with elements in the document. Writing a form
letter, one would invoke the principle of propagation and
use the Mail Merge command to associate data from a
spreadsheet for words in the document. These functions
save time and help reduce mistakes, but most novices,
who operate the program based on surface
characteristics, do not know they exist and would not
think to look for them. And so, with computational
thinking, one does not have to approach the tool as its
metaphors might suggest, but from an understanding of
what computers do well. A person who uses it this way is
almost certainly using it more effectively.

But more than this, a computational perspective can
completely change the potential of the software.
Returning to the previous example, Malcolm McCullough
once described to me how he uses Word as a research
tool, counting the number of times an author used
important words or phrases. This simple frequency
analysis helps him find patterns in arguments and
citations. Now, take things a step further and visualize

this analysis. A simple script that associates frequency to
font size produces a tag or word cloud' - a quick way to
summarize a body of text. So thinking computationally,
even about something as mundane as Word, can
transform our way of thinking about the tool and lead to
the creation of new knowledge.

Computational thinking is empowering. A student that
understands the principles of computation in a program
like Word should be able to recognize them in Photoshop,
AutoCAD, Grasshopper, and even Python. While the
specific uses and interfaces of these programs and
languages are different, the ideas of computation, like
substitution, parameters, and propagation can be found
in all of them. Knowing principles makes it easier to learn
the tool and use it more effectively. In addition, a student
who can think in terms of these principles will be better
prepared for any new program they might encounter
post-graduation. And so, learning computational thinking
has more lasting educational value compared to other
methods of teaching digital design software.

Curriculum

Unfortunately, no one knows exactly how to teach
computational thinking. This is a well-known problem
even in computer science. Studies from this field suggest
that it is highly unlikely that architecture students could
learn it simply by taking a programming course or one
that specifically teaches thinking skills. Without special
effort on the part of instructors and learners, novices who
study a programming language tend to demonstrate poor
performance, particularly in the design of programs
[Soloway 1986]. Nor do they gain additional benefits such
as improved problem solving skills -- something we might
expect as part of computational thinking [Mayer 1986].
These findings imply that developing computational
thinking in designers requires a different approach.

The challenge facing educators who want to teach

! See http://www.wordle.net/

thinking skills is one of transferable knowledgez. This is
knowledge applied outside the context in which it was
learned-- the very opposite of rote learning. There are
two basic types of transfer, known as near and far
transfer. We are interested in both. Consider a student
who learns a particular technique for procedurally
generating a roof panel system. If the student understood
that the paneling method could be used to make floor
and wall systems in the same software, this would
demonstrate near transfer of learning. If the same
student applied the logic of the paneling system in a GIS
scripting language to distribute plots for a real estate
development, this would be evidence of far transfer. And
so, transfer is desirable because it makes learning more
efficient for both teachers and students. If the goal is to
graduate students who can apply programming ideas to
design and adapt to changes in technology, teaching for
transfer should be a priority.

Transfer rarely happens spontaneously, even with
1989].
Procedural knowledge, such as following instructions to

significant practice [Perkins and Salomon
use a program, is especially prone to rote learning. It
takes a specific kind of teaching to break free of this. As
such, in order to help students become flexible
computational thinkers, our proposed curriculum uses
teaching methods and course materials that have been
proven to help with transfer. We design our lessons with
three basic requirements in mind. First, software
demonstrations need to take into account many contexts.
This is so that students get a sense of when a particular
technique or idea applies, and whether there are any
exceptions to this. Most tutorials rarely explore enough
variations for this to occur. Second, and most critically,
transfer must happen mindfully [Salomon 1985]. This is to
say that students must be guided and encouraged to
extract the principle or strategy themselves. They must
study examples intently instead of stepping through them
in a disassociated manner. In this way, the student takes
ownership of the principle. They are not simply told it;

’For a review of literature on transfer, see [Butterfield, et al
1990]

they discover it. Lastly, transfer depends upon
metacognition or "thinking about thinking" [Perkins and
Salomon 1988]. The student needs to be taught how to
self-monitor, to examine the kind of task they want to
perform, determine which principle applies, and adapt or
correct their approach if it doesn't seem to be working.
Each of these requirements takes extensive preparation
and careful classroom management, but the net effect is
to transform learning digital techniques and methods

from a passive experience to an active one.

Another way our proposal supports transfer is in the
sequencing of courses within the curriculum. We do not
propose one class that teaches computational thinking.
Rather, this knowledge is spread across several years of
schooling. Research and experience suggest that it takes
time and practice to develop this kind of thinking.
Moreover, we want to show that computation is not
limited to a single semester or to certain pieces of
software. Rather, it is a way of doing things that is
compatible with design thinking. If students see
computation in multiple contexts and in ways that
connect to their level of understanding, they will be more
likely to integrate it into their work.

Our course sequence is based on an educational
methodology called cognitive apprenticeship [Collins et
al, 1990]. This is similar to the idea of design studio, in
which students encounter a successive approximation of
how professional designers think and work. In our case,
we hope to inculcate a model a mature computational
thinker.

The curriculum divides the teaching of computational
thinking into three different stages of apprenticeship. In
their second year, students encounter what we call the
“awareness” phase. The objective of this phase is to
introduce students to computation early in their
education, in a way that is motivating and interesting, but
not so deep that they find the material overwhelming. In
our design studios, students are taught computational
strategies while they learn design software like
Photoshop, AutoCAD, Rhinoceros, etc. The content of
these lessons is similar to the earlier Word example. We

show students how approaching software
computationally makes them more effective designers.
This serves two purposes: 1.) it gives computational ideas
immediate relevance and 2.) it destabilizes the idea that
computation is limited to programming or software such

as Revit and Grasshopper.

commands and so are not easy for a person to discover
on their own. Moreover, they are general enough to
apply to nearly any kind of software. Bhavnani’s research
demonstrates that students who learn strategies are
likely to apply them in new contexts.

M2 IstYear 2nd Year
Comp. Methods| 7102
MI IstYear 2nd Year 3rd Year
5050/ 6111 6112 Comp. Methods| 7103 7102
IstYear 2nd Year 3rd Year 4th Year S5thYear
UG Fall Spring Fall Spring Fall Spring Fall Spring Fall Spring
Computational % Computational %
101 1102/1602 2101 2102 Methods 3102 4101 4102 Practices 4104
“\ Adv.Topology
< Introduction to Basic CAD Strategic Strategic Thinking| Strategic
Wl | Computational . Topology T Thinking & & Processes in Thinking &
Techniques Strategic Thinking 3
[a) Processes Processes Practice Processes
- & Processes
Advanced 3D Adv.Scripting
ﬂ 2D Graphics Modeling Adv. Parametric
. " 5 qq Design Advanced
=| Digital Media 2D CAD Basic ?D Basic Scripting Information
Concepts Modeling N
Y 3 q Research Modeling
Basic Parametric
(7] . Methods and
Interfaces Design P
Writing
ENE EXPLICIT UNDERSTANDING MASTERY

Figure 1. Provisional curriculum diagram, University of North Carolina at Charlotte, 2010.

The strategies are based upon a framework developed by
Bhavnani, et al [2008]. Compiled through a careful study
of expert users, their framework teaches efficient and
effective uses of software that are derived from the
powers of computation. An example of a strategy is
“reuse and modify groups”. This idea comes from the
principles of abstraction and iteration. For instance, when
drawing a series of doors, it is faster to make one door
and to copy and modify it than it is to draw each door
separately. Similarly, making a spreadsheet, it is faster to
drag a formula across cells and then modify it than to
write multiple specific formulae. This is a basic example,
but something than many novices and even experienced
users tend to overlook. Strategies like this are interesting
to students because they save time compared to other
methods. They are not learned by studying software

In the third year of the curriculum (the middle year for
most of our students) we position our keystone class,
Computational Methods. This is what we call the “explicit
understanding” phase. It marks the transition from
peripheral usage of computation to intensive practice.
This seminar-style class surveys the principles that
underlie computation: variables, conditionals, data
structures, etc. Students are not merely shown or taught
the principles. Instead, students derive them through
rigorous exercises that relate to design. To cite two
examples, one lesson teaches students about logic and
algorithm design by having them write generative rules
for Bauhaus compositions. In another lesson, they hand-
code simple parametric systems from scratch. The later
example could be done with software like Revit, but by

making the steps involved explicit, the programming

exercise helps the student grasp what is happening
computationally as well as the design thinking that goes
into creating a parametric object in software.

In the first half of the course, students study the
principles using a scripting language such as Processing or
Python. Learning to write code is important for architects
because most design tools have built-in scripting
languages that allow users to automate tasks or associate
their information with other programs. Moreover,
programming skill addresses a broader domain than
drawing and modeling. It connects to other media such as
visualization, simulation, physical computing, as well as
fields outside of architecture.

The second half of the class reexamines the principles
through computational software: parametric programs
like Grasshopper and 3D-specific scripting languages like
Rhinoscript. In most architecture programs, this would be
students’ first exposure to computation. Computational
Methods treats these tools as another way to interface
with computation and an opportunity to learn the
advantages and disadvantages of representing processes
in different ways.

Lastly, in their final year, students move into the mastery
phase. The goal of this phase is for students to transition
to independence, applying what they have learned about
computation towards self-directed inquiry and reflection.
In a course we call Computational Practice, students work
on projects with real objectives, such as competitions and
conference papers, in groups and with people from other
disciplines. We see this as a laboratory where students
can cultivate a personal take on computation, developing
a sense of their own process before they graduate into
professional practice.

The School of Architecture at UNC Charlotte sees
computation as an integral part of 21st century
architecture. However, a reliable model for teaching this
outlook does not yet exist. To address this challenge, the
curriculum committee believes that computer science
and educational research can provide valuable insights
into successfully teaching computational thinking where

intuitive, command-based pedagogies fall short. We
forward to testing our hypothesis when the proposed
curriculum debuts in the coming fall.

Evaluation

Because the curriculum is still under review, we have no
assessment data to share at this time. We are presently
collecting control data, with the expectation of following
up when the new curriculum launches in the fall semester
of 2011. Our assessment plans include both quantitative
and qualitative components. In our quantitative tests, we
will be looking for evidence of near and far transfer.
Respectively: whether students are able to apply
computational strategies and principles to effectively use
programs they already know; and whether this
knowledge helps them to use a program they have never
seen before. These tests will be conducted using a
protocol involving scripted problems, screen recording,
and self-reporting by the subjects. The qualitative half of
the assessment will use pre- and post-course surveys, and
attempt to gauge students’ values, attitudes, and
understanding of digital media concepts. Our plan is to
conduct these tests in a long-term study, repeating them
which each incoming class, and following students’
progression through the curriculum over several years.

Conclusion

This paper describes an integrated curriculum aimed at
teaching students to be more mindful and flexible users
of design computing. Rather than software training using
rote tutorials, we propose a framework through which
students might learn computational thinking: the
fundamental principles of computation as they apply to
problem solving and design. This framework, based on
research from cognitive science and computer science
education, consists of a sequence of courses intended to
help students experience, identify, and demonstrate key
computational principles. Our department's goal is for
students to be able to apply computational thinking
towards any current or future software they might
encounter. As of this writing, the curriculum is still under

review, but the first stages of our evaluation effort are
already underway. We plan to report back on our findings
in a future paper.

References

Bhavnani, S. K., Frederick A. Peck, and Frederick Reif.
"Strategy-Based Instruction: Lessons Learned in
Teaching the Effective and Efficient Use of Computer
Applications." ACM Transactions on Computer-Human
Interaction 15, no. 1 (2008).

Blackwell, Alan F. "What Is Programming?" In 14th
Workshop of the Psychology of Programming Interest
Group. Brunel University (2002).

Butterfield, Earl C., and Gregory D. Nelson. "Theory and
Practice of Teaching for Transfer." Educational Theory
Research and Development 37, no. 3 (1990): 5-38.

Collins, A., John Seely Brown, and S.E. Newman.
"Cognitive Apprenticeship: Teaching the Crafts of
Reading, Writing, and Mathematics." In Knowing,
Learning, and Instruction: Essays in Honor of Robert
Glaser, edited by L.B. Resnick. Lawrence Erlbaum,
(1990): 453-94.

Crawford, Chris. "Process Intensity." Journal of Computer
Game Design 1, no. 5 (1987).

Dalbey, John, and Marcia C. Linn. "The Demands and
Requirements of Computer Programming: A Literature
Review." Journal of Educational Computing Research 1,
no. 3 (1985): 253-74.

Linn, Marcia C. "The Cognitive Consequences of
Programming Instruction in Classrooms." Educational
Researcher 14, no. 5 (1985): 14-29.

Maeda, John. Design by Numbers. Cambridge: MIT Press
(1999).

Mayer, Richard E., Jennifer L. Dyck, and William Vilberg.
"Learning to Program and Learning to Think: What's
the Connection?" Communications of the ACM 29, no.
7 (1986): 605-10.

Papert, Seymour. Mindstorms: Children, Computers, and
Powerful Ideas. Cambridge: Perseus Publishing (1993).

Pea, Roy D. "Beyond Amplification: Using the Computer
to Reorganize Mental Functioning." Educational
Psychologist 20 (1985): 167-82.

Pea, Roy D. "Logo Programming and Problem Solving.
[Technical Report No. 12.]." In American Educational
Research Association Symposium. Montreal, Canada
(1983).

Perkins, D. N., and Gavriel Salomon. "Are Cognitive Skills
Context-Bound?" Educational Researcher 18, no. 1
(1989): 16-25.

Perkins, D. N., and Gavriel Salomon. "Teaching for
Transfer." Educational Leadership 46, no. 1 (1988): 22-
32.

Salomon, Gavriel. "Information Technologies: What You
See Is Not (Always) What You Get." Educational
Pyschologist 20, no. 4 (1985): 207-16.

Sheil, B.A. "Coping with Complexity." Information
Technology & People 1, no. 4 (1983): 295-320.

Soloway, E. "Learning to Program = Learning to Construct
Mechanisms and Explanations." Communications of
the ACM 29, no. 9 (1986): 850-58.

Wing, Jeannette M. "Computational Thinking."
Communications of the ACM 49, no. 3 (2006): 33-36.

