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The method proposed in this project addresses the
parametric manipulation of a given pattern to respond
directly to a parametric surface.The research attempts
to propose a method for attaching fixed sized objects
to a free flowing surface or “blanket.” The model can
be used to interrogate a series of shapes and forms
with the same componentry. Continuing the research
of Kevin Rotheroe,Yale University and founder of
FreeForm Design. Rotheroe and his students developed
a series of studies in material and surface properties.
By utilizing a proven pattern, the proposed method sets
parameters derived from the formal properties of the
original pattern and produces a new pattern that is
responsive to the curvature of a complex surface.The
workflow developed in this research consists of a
complex blending of tools in Rhino Grasshopper and
Gehry Technologies Digital Project.The intent is to
achieve the aesthetics and structure offered by
Rotheroe’s original research and to add a responsive
precision that provides an accurate adaptation of the
pattern based on curvature of a specific
computationally defined surface.



1. INTRODUCTION

The exploration of adaptable surfaces in the field of architectural research is
pertinent to elements such as façades, building skins, and interior walls and
surfaces. It allows a single pattern to be applied to any given surface within a
building while responding to the constraints of those surfaces. Parametric
software has made complex structural systems tangible and doubly curved
surfaces feasible. Rotheroe (2001a) investigated cut patterns, which were
explored using plastic bent forms in steel.The surfaces analyzed here,
address material and production constraints, pattern study, and modeling
processes.The studies focus on maintaining the purity of the patterns and
exposing their limitations on a flexible surface shape. Each unique piece of
geometry was tested first as a physical set of components, which could then
be pushed into a variety of shapes and forms, testing the limitations of the
geometric pattern, through physical models.

The intent of the following research was to test a parametric model that
rationalizes a tessellation patterns as a response to an undefined surface.
The physical tests of patterns have primarily been the simplest method for
articulating the range of possible forms for each pattern.The intent of this
research was to ensure the proposed method would adapt to the scale and
shape of the pattern on a given surface. In this method, Rotheroe’s (2001b)

� Figure 1. Drawing pattern and

respective diagram of plastic bending

formation.

� Figure 2. Physical (left) and

parametric (right) reproduction of

original patterns flowing on a surface.

321Sphere Mapping: a method for responsive surface rationalization



workflow of pattern before surface is reversed, resulting in a pattern that
responds directly to a complex surface. Eventually subtractive CNC plasma-
cutting was be used to produce the resulting surface, which was overlaid on
a plywood eggcrate to confirm its geometric capabilities.

2. PARAMETRIC MODELING WORK FLOW

2.1. Sphere Mapping

This process mapped out in the following pages was created entirely
through geometric relationships in Gehry Technologies, Digital Project and
Rhino Grasshopper. In Digital Project, the process of Sphere-Mapping can be
applied to a given surface.This technique creates a triangulation on the
surface by creating spheres that intersect with the surface.To start the
process, the pattern and triangles that form the hexagons are laid out two-
dimensionally.The triangles provide the radius of the spheres with their
dimensions in addition to providing the dimensions of the hexagonal shapes
(see figure 3).

� Figure 3. Sphere-mapping process.

Sphere intersecting with surface (left).

Resulting lines projected on surface

(center). Resulting mapped triangles

(right).
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In order to map the triangles, two isocurves are created on the surface;
one in the ‘u’ direction and one in the ‘v’ direction.The intersection of the
two isocurves is used as the center point for the first sphere of the
sequence.The sphere and the surface intersect to create a curve on the
surface (whose points are all equidistant from the center of the sphere).To
construct the next sphere, the previous steps are repeated with the second
radius given by the corresponding triangle of the two-dimensional layout.
The point of intersection of the two curves is the first point of the triangle.
In this particular pattern, however, there are two sizes of triangles. One set
comprises the hexagons while the second set is used for spacing between
each hexagon.A triangulated structure is the result of the sequence.The
sequence must free itself from the surface, operating in the center of the
form, free to “flow” on the surface as the triangulation necessitates. It
should be noted that this process can be constructed in Digital Project upon
a parametric surface, whereby the triangulation can be recalculated should
the original surface be changed.Though the intersections of the panel
systems must remain on the surface or the panel will fail as the spheres no
longer intersect with the surface.



3. SURFACE DIVISION

The final workflow involves processes that require the geometric flexibility
of tools in Rhino Grasshopper and the geometric precision and rapid
replication provided by Digital Project. In this method, Rhino Grasshopper was
to develop a parametric process for linking triangulation sizes or pattern
sizes to the twist and radius of the curvature.The intent is to generate a
surface to which a pattern can be flexibly applied. In order to achieve a
regular partition of the given surface, the “Divide” and “Subsurface” tools
are used.The result is a surface of triangles of approximately the same size.
Next, the surface was further divided using a mesh, the partitioned surface
was divided into more responsive and articulated triangles.The division
produced by mesh tools is affected directly by the curvature of the surface.
However, the outcome is not functional until a “Delaunay” tool was applied
to subdivide the surface and make the triangle sizes responsive to the radius
of the curvature.

“Delaunay meshes” produce appropriately responsive subdivisions by
avoiding the typically thin triangles of conventional meshes. Delaunay
meshes by their definition create triangles which have vertices with the
largest angle possible at each vertices.This creates an idealised form as it
minimises the difference between each adjacent triangle.

First, precise changes on the surface were defined that respond to the
twist of surface in certain places.Triangles become smaller as the radius of
the surface decreases. Second, the angle tolerances are controlled to avoid
extreme changes in the surface.When a surface curves beyond a certain
point, the Delaunay mesh tool divides the area undergoing the relatively
extreme radius into smaller triangles.This allows the surface to bend.The
lines of the curved surface were translated onto flat surfaces created by
“unrolling” the original curved surface.The outcomes are precise, however,
Rhinoceros restricts the use of the “unroll” command in cases of doubly
curved surfaces.Therefore, the responsive surface at this moment is either
singly curved or requires stitches between breaks to reconnect splits or
slots between zones of the surface.

4.APPLICATION OF PATTERN TO SURFACE

The process shifts to Digital Project as the software’s has the ability to apply
a pattern iteration to multiple surfaces, producing derivations of the original
pattern that respond directly to new versions of the surface. Inside of
Digital Project the user is capable of creating adaptive geometric linkages
between Rotheroe’s hexagonal pattern and the Delaunay triangulation.The
“power copy” process allows a shape to be copied to a separate area of the
surface while keeping the original properties of that shape intact. In this
instance each hexagon and its relationships is maintained while the entire
shape shifts to adapt to the size of each mesh triangle. Using the two-
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dimensional file imported from Grasshopper, the points of the existing
triangles are used to locate the points of the hexagons.Within this
particular pattern, there are two different types of hexagons and three
different types of triangle joints.The set of hexagons consist of alternating
rows of dominant hexagons and recessive hexagons.The three triangle
joints are necessary in order to address the different orientations of the
joints. In order to maintain consistency throughout the pattern, a separate
“copy” is necessary for each type of shape (see figure 4).

� Figure 4. Power copy process.
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4.1. Instantiation Process

Beginning with the main hexagon, six points are located on the triangles of the
original mesh to construct a surface. In order to compensate for the spacing
between each hexagon in the original pattern, a copy of the hexagon is scaled
down in size.The original hexagon is then hidden.The workflow of Digital
Project does not allow objects to be erased after a power copy has been made.
The copied object is directly linked to the original, and will lose any data if the
first shape is deleted.Therefore, in order to simplify what is viewed, the original
shape is hidden. Each copy of the hexagon is instantiated throughout the
original mesh.The resulting hexagonal surface contains the same properties as
the original but responds directly to the points selected. In this phase, the
variation in shape and size is evident.To create the proper pattern, each row
consists of several of one of the two hexagonal power copies. Each original
power copy must be made prior to the replication of shapes.

4.2. Preparation of Cut File

The model is now exported as a drawing and imported back into
Rhinoceros.We elected to test the subtractive construction method for both
the CNC Laser Cutter and CNC Plasma Cutter machines. In order to fit
the cut file to a given sheet size, in this case 4’-0” by 8’-0”, a box of the



given dimension is drawn around the imported drawing.Any hexagons that
do not fit onto the sheet were trimmed from the drawing.As the original
pattern consumed roughly this same area, the shifted version of the drawing
would inevitably be slightly larger in some dimensions.The proportions of
each type of cut were matched to the thickness of the material. For
chipboard, .022”, and for 20 gauge steel- .0359.The resulting pattern
consists of hexagonal shapes, separated by four-sided gaps, and triangles at
the connectors.The entire surface consists of planar shapes that bend only
at the points where hexagons meet a triangle: there are no curved shapes.
The resulting file is the hexagonal pattern that is ready to be cut into the
full sheet or scaled down to do mock-ups.

4.3. Radius and curvature analysis

The analysis of the curvature radius is important in order to understand
whether or not the pattern can adhere to the limitations of the material, in
this case, 20 gauge steel.The responsive properties include tessellation only
on each “twist” of the surface.This definition can be changed where the
extreme radius of 16” is present (see figure 5).The bent surface at the edge
will tessellate (see figure 6).This shift in the size of the hexagons is a direct

� Figure 5. Radius of the curve with

changing tessellations.

� Figure 6.Tessellations (triangles)

converted into hexagons have different

sizes but are related and proportional

to original surface geometry.

325Sphere Mapping: a method for responsive surface rationalization



response to the twist of the surface.This explains why that particular portion
of the tessellation changes (see figure 5). Because the hexagons were derived
from triangles and do not match the original tessellation exactly, sizes are
different but are proportionate to the original curvature of the surface.

5. MOCK-UP PROCESS

Once the cut file is ready, a series of mock up models were generated (see
figure 7) to test the outcomes to scale.The production of scaled and full
size models, using pliable materials, such as chipboard, defined inaccuracies
or failures within the pattern. It also afforded us a test to determine
whether the Grasshopper pattern is physically capable of bending to the
surface.After the cut file was modified according to the chipboard mock-up,
we cut a portion of the file from a 20 gauge steel sheet, 2’-0” by 2’-0”, on a
CNC plasma cutter (see figures 8 and 9).The egg crate (intersecting
contours of surface) made in stage three is created to verify the accuracy of
the chipboard model and to test the accuracy of the process.

� Figure 7. Laser cut chipboard mock

up of final pattern and triangle mesh.

� Figure 8. CNC plasma cutting in

progress.

� Figure 9. Final test cut.
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5.1. Egg Crate

In order to accurately test the final product, the surface was applied to an
egg crate structure.The egg crate was used as a tool to produce an
approximation of the precise bend of the surface. Using a CNC router, 3⁄4”
plywood was cut and assembled (see figure 10).

5.2. Final Surface

The next phase of the process entailed the use of a CNC plasma cutter to
cut 20 gauge steel test sheets. Explorations in this phase include the testing
of cut line variations, and the analysis of the sheet’s ability to achieve the
proposed curvature.The eggcrate was intended to function as a guide for
the metal.The piece was laid over the structure and going from one end to
the other is slowly bent to the egg crate.The goal is to form the metal to
the egg crate as well as it can until the joints start to stretch and
compromise their geometry.This shows us where the constraints of the
material and the pattern/method meet.� Figure 10. Final surface formed over

egg crate.
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6. CONCLUSION

6.1. Overview

The surface produced proved the proposed method to be successful in
several ways.The expectations of creating sub-divisions that correspond
directly to the curvature of a given surface were met (see figure 11).The
pattern components varied in size in the desired areas, allowing the metal
to take the proper form.The gradual dimension change of the original
triangles reciprocated in the transition of hexagons. Overall, the surface
adhered to the same aesthetic quality of the original Rotheroe pattern while
maintaining structural integrity.The elegance and precision present in the
original pattern were actually enhanced through further articulation.The



connections proved relatively strong and provided ample flexibility to
support the bending of the metal.The triangles serviced the bending
requirements, and alleviated any harsh or drastic bending by the
introduction of smaller hexagons in areas of extreme curvature.

6.2. Future Work

The product of this process is a study to understand the strengths and
weaknesses of a responsive pattern system. However, understanding the
constraints of the system, the applications became more evident.The
ultimate intent was to create a pattern that can respond in size to the
complexity of a surface.The current system responds rather well, however,
it would benefit from further iterative studies in order to understand the
optimum connection for the pattern and material.The process is applicable
to the study of other material constraints, which could be defined as
responsive to materiality, surface and form.
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change in size of hexagonal patterns.
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